Transient oscillatory force-length behavior of activated airway smooth muscle.
نویسندگان
چکیده
Airway smooth muscle (ASM) is cyclically stretched during breathing, even in the active state, yet the factors determining its dynamic force-length behavior remain incompletely understood. We developed a model of the activated ASM strip and compared its behavior to that observed in strips of rat trachealis muscle stimulated with methacholine. The model consists of a nonlinear viscoelastic element (Kelvin body) in series with a force generator obeying the Hill force-velocity relationship. Isometric force in the model is proportional to the number of bound crossbridges, the attachment of which follows first-order kinetics. Crossbridges detach at a rate proportional to the rate of change of muscle length. The model accurately accounts for the experimentally observed transient and steady-state oscillatory force-length behavior of both passive and activated ASM. However, the model does not predict the sustained decrement in isometric force seen when activated strips of ASM are subjected briefly to large stretches. We speculate that this force decrement reflects some mechanism unrelated to the cycling of crossbridges, and which may be involved in the reversal of bronchoconstriction induced by a deep inflation of the lungs in vivo.
منابع مشابه
Modeling the oscillation dynamics of activated airway smooth muscle strips.
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle. However, it is well known that the passi...
متن کاملModeling the impairment of airway smooth muscle force by stretch.
Imposed length changes of only a small percent produce transient reductions in active force in strips of airway smooth muscle (ASM) due to the temporary detachment of bound cross-bridges caused by the relative motion of the actin and myosin fibers. More dramatic and sustained reductions in active force occur following large changes in length. The Huxley two-state model of skeletal muscle origin...
متن کاملMechanical properties of asthmatic airway smooth muscle.
Airway smooth muscle (ASM) is the major effector of excessive airway narrowing in asthma. Changes in some of the mechanical properties of ASM could contribute to excessive narrowing and have not been systematically studied in human ASM from nonasthmatic and asthmatic subjects. Human ASM strips (eight asthmatic and six nonasthmatic) were studied at in situ length and force was normalised to maxi...
متن کاملEmpirical model for dynamic force-length behavior of airway smooth muscle.
An empirical mathematical model that describes the relation between force and length for dynamic loading of maximally activated airway smooth muscle is described. The model consists of three first-order, ordinary differential equations: one for muscle shortening, one for lengthening, and a third that describes the evolution of an internal variable that depends on muscle history. The model fits ...
متن کاملChanges in force-velocity properties of trachealis due to oscillatory strains.
The physically dynamic environment of the lung constantly modulates the mechanical properties of airway smooth muscle. In vitro experiments have shown that contractility of the muscle is compromised by oscillatory strains, perhaps through disruption of cross-bridge interaction and organization of the contractile filaments. To understand the mechanism by which oscillation affects contractility, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 297 2 شماره
صفحات -
تاریخ انتشار 2009